2019
China's first high-tech stealth fighter enters service
Entering service this year is the Chengdu J-20 (literally, "Annihilator Twenty"), a fifth generation stealth fighter jet developed for the People's Liberation Army Air Force.* Until now, the United States was the only country to operate a stealth fighter; in its case, the Lockheed Martin F-22 Raptor, which is slightly smaller than the J-20.
Though it has slightly less agility and speed than the F-22, the J-20 has a longer range and nevertheless acts as a formidable addition to the Chinese air force. It is built using several Russian components and is believed to be designed using certain Russian plans. Armaments include both long and short range air-to-air missiles together with lateral weapons bays.
The avionics and navigation technology is highly advanced, and regarded with secrecy by the Chinese government. This has raised suspicions of cyber-espionage, as the Chinese program bears a number of striking resemblances to the American F-35 Lightning II. Investigations point to leaks from government contract firms. The affair leads to a period of tense international relations between the two superpowers. The J-20 meanwhile acts as another milestone in China's march towards an ever larger and more high-tech military force.*

Credit: Alexandr Chechin
A new generation of U.S. tanks
In addition to the M1A3 Abrams (first deployed in 2017), a new Ground Combat Vehicle (GCV) has been developed. This huge tank weighs 84 tons – more than twice as much as its predecessor. It is so heavily armoured, in fact, that it can withstand hits from roadside improvised explosive devices (IEDs).* Designed to carry a nine-man squad and three-man driving crew into battle, it provides covering fire with a 30mm cannon, the Mk44 Bushmaster II.
The vehicle is equipped with a hi-tech C4ISR (command, control, communications, computers, intelligence, surveillance and reconnaissance) system. It has an E-X-Drive hybrid electric system, for high power and torque, with an engine that is 20% more fuel efficient than the previous generation. Its top speed is 47 mph (75 km/h) and maximum range is 188 mi (300 km).
With its monstrous weight, superb armour, high manoeuvrability and numerous hi-tech systems, the GCV is a formidable addition to the U.S. army. Its open architecture and infrastructure means it can also be adapted to other existing and future C4ISR systems. It remains in service until the 2050s.

Copyright © 2012 BAE Systems
British troops leave Germany
Britain has maintained a continuous military presence in Germany since World War II. After the Cold War, however, there was less need to keep personnel stationed there. The last remaining army bases are finally closed this year. Around 15,000 troops had left in 2016; the remaining 4,500 are brought back in 2019, closing an important chapter in the history of both countries. This move saves Britain around £240 million a year in operational running costs.*

The International Linear Collider is completed
This project is the culmination of more than 20 years of concerted international effort, with funding and research from nations in Europe, Asia and the Americas. Over 300 universities and laboratories have taken part. It originated as a series of three separate collider proposals – the Next Linear Collider (NLC), the Global Linear Collider (GLC) and the Teraelectronvolt Energy Superconducting Linear Accelerator (TESLA), all of which were combined into the International Linear Collider (ILC).*
Located in Europe, the ILC is the successor to the Large Hadron Collider (LHC), building upon the work already done by that machine. Although its collisions are less powerful, it offers far more precise measurements. It also gives off less electromagnetic radiation.
The ILC consists of two opposite-facing linear accelerators, together stretching 31 kilometers (19.3 miles), that hurl particles and anti-particles towards each other at close to the speed of light.* Along with the linear accelerators, the facility contains two dampening rings, with a circumference of 6.7 kilometers (4.2 miles). Current energy levels of the collisions are 500 billion-electron-volts (GeV), but will soon be upgraded to a trillion-electron-volts (TeV).
The extreme precision and exact recordings offered by the ILC help to reveal some of the deepest mysteries of the universe. Some of the experiments are concerned with extra-dimensional physics and supersymmetric particles, while others provide research into dark matter.*

The ExoMars rover touches down on Mars
ExoMars is a joint mission between ESA and the Russian Federal Space Agency (Roscosmos) which is divided into two parts. The first phase of the mission is launched in 2016, arriving nine months later. This consists of an orbiter – ExoMars Trace Gas Orbiter – which maps sources of methane and other gases on Mars, to determine the best location for a rover to study. It also contains a static demonstration module to prove the landing site is viable.
The second phase is launched in 2018, arriving in 2019 with the ExoMars rover built by ESA. This lands on Mars using a "sky crane" system, in which four rockets slow the descent once the main parachute has been deployed.
The rover's primary objective is to determine any signs of microbial life on Mars, past or present. It is equipped with a drill that bores down two meters below the surface to retrieve samples. These are transferred to a miniature laboratory inside the rover. This contains a sensor for biological molecules, infrared and X-ray spectroscopes that catalog the mineralogical makeup of the sample, together with imaging devices.
Located in the drill structure is another infrared spectrometer which studies the inside surface of the bore hole. ExoMars uses ground-penetrating radar to search for ideal locations at which to drill. The mission is almost entirely automated, as the rover uses imaging cameras to create a 3D map of the terrain in order to avoid obstacles. It has a lifespan of six months, travelling approximately 100 metres each day and testing dozens of different samples.
Alongside the ESA rover, NASA had originally planned to include its own – the Mars Astrobiology Explorer-Catcher (MAX-C). However, this was cancelled in 2011 due to budget cuts. The remaining program lays the foundation for the first Mars sample return mission, to be carried out in the 2020s.*
The first manned outpost beyond the Moon begins assembly
The "Gateway Spacecraft" is humanity's first manned outpost beyond the Moon. Its orbit is placed at Earth-Moon Lagrange Point 2 (L2)* – roughly 38,000 miles from the Moon and 277,000 miles from Earth – a location allowing it to function as a stepping stone for future missions to the Moon, Mars and nearby asteroids.
Some of the construction involves using "recycled" parts from the International Space Station, which itself is nearing the end of its life. The new Space Launch System delivers the first components in 2019.* Because it lies outside the Earth's magnetic field, special consideration is given to the shielding needed to protect the astronauts at risk from the Sun's radiation.

Earth-Moon Lagrange Points. Diagram not to scale. Credit: NASA
The first mission to a gas giant using solar sail propulsion
Solar sail propulsion is a new method of space travel that requires no fuel, but instead captures the Sun's energy in the form of high-speed gas particles and photons. Known as the "solar wind", this stream of charged particles can be harnessed so that it strikes large mirrors, gradually accelerating a craft to extremely high speeds.
It was first demonstrated in 2010 with a 14m (46 ft) Japanese experimental probe called IKAROS. This passed by Venus at a distance of 80,800 km (50,200 mi). It was followed by two NASA spacecraft – NanoSail-D2 in 2011 and the much larger Sunjammer in 2014, the latter with sails reaching 38m (124 ft).
Later in this decade, an even larger spacecraft is deployed, again by the Japan Aerospace Exploration Agency (JAXA). This measures 50m (164 ft) and is shaped like a flower. It features a hybrid propulsion method that combines sailing with an ion-propulsion engine, powered by embedded solar cells. The craft is sent to explore Jupiter and the nearby Trojan asteroids that share the planet's orbit.**

Launch of the BIOMASS mission
BIOMASS is a €400 million Earth Observation mission launched by the European Space Agency (ESA). It provides the first truly comprehensive measurements of global forest biomass. High resolution maps of tropical, temperate and boreal forest biomass are generated, using a radar sensor to determine both the height of trees and how much wood they contain. These ultra-accurate maps help scientists address fundamental questions about changes in forest structure – especially in tropical regions, where ground data are scant. They also help put a figure on the carbon emissions resulting from deforestation and land-use change, making it possible to form better estimates of future climate change. The mission runs from 2019-2024.*

Credit: ESA/AOES Medialab
Europe's Galileo satellite navigation system is fully operational
Galileo is a global navigation satellite system (GNSS) built by the European Union (EU) and European Space Agency (ESA). The €5 billion project is named after the Italian astronomer Galileo Galilei. One of the aims of Galileo is to provide a high-precision positioning system upon which European nations can rely, independently from the Russian GLONASS, American GPS, and Chinese Compass systems, which can be disabled in times of war or political conflict.
When in operation, it uses two ground operation centres near Munich, Germany and in Fucino, Italy. In 2010, Prague in the Czech Republic was voted by EU ministers as the headquarters for the project. In 2011, the first two of four operational satellites were launched to validate the system. The next two followed in 2012, making it possible to test Galileo "end-to-end". Once this In-Orbit Validation (IOV) phase was completed, more satellites were launched, reaching Initial Operational Capability (IOC) in the middle of the decade. Full completion of the 30 satellites in the Galileo system (27 operational + 3 active spares) is achieved in 2019.* Europe now has its own independent satellite navigation capability.*
In addition to basic navigation services free of charge (giving horizontal and vertical measurements accurate to within 1 metre), Galileo provides a unique global Search and Rescue (SAR) function. Satellites can relay distress signals from a user's transmitter to the Rescue Coordination Centre, which then initiates a rescue operation. At the same time, the system provides a signal to the user, informing them that their situation has been detected and that help is on the way. This latter feature is a major upgrade compared to the existing GPS and GLONASS systems, which do not provide feedback to the user. The use of basic (low-precision) Galileo services is free and open to everyone. High-precision capabilities are available for paying commercial users and for military use.

Credit: Lukas Rohrt
Computers break the exaflop barrier
An exaflop is 1,000,000,000,000,000,000 (a million trillion, or a quintillion) calculations per second. The world's top supercomputers are now reaching this speed, which is a 1000-fold improvement over those of a decade earlier.* This exponential growth will continue for many years to come.
Personal computers are becoming ever more compact and sophisticated, with laptops and other mobile devices far outnumbering desktops.* Physical hard drives have become almost redundant, with most storage now done online using "virtual drives" in remote servers, aided by the growth in broadband speeds and wireless communications.
Web applications have reached startling levels of sophistication, especially where search engines are concerned. These not only find keywords in a search, but also interpret the context and semantics of the request, often with voice recognition software. Natural language processing had already begun to emerge some years earlier with Siri and other such tools. This form of AI, acting like a personal assistant, is now even more powerful and versatile.* Users can ask highly specific questions and receive detailed answers customised to their exact requirements.

Bionic eyes with high resolution are commercially available
Following years of trials, high resolution bionic eyes are now available for patients with degenerative vision loss. The first prototypes of this technology were somewhat crude and pixelated, with less than 100 dots of resolution. However, these new versions provide over 1000 dots, allowing patients to recognise faces and read large print.*
Bionic eyes continue to gain in sophistication over subsequent decades, making rapid progress in resolution and visual quality. Fully artificial eyes are eventually developed that actually provide better vision than healthy eyes. This leads even people with normal eyes to "upgrade" their sight.
A vaccine to treat melanoma
Melanoma is the deadliest form of skin cancer, killing over 48,000 people worldwide each year. During the 2010s, attempts were made to develop an implantable vaccine to treat the condition. In preclinical trials, 50 percent of mice treated with two doses of the vaccine – animals that would otherwise have died from melanoma within about 25 days – showed complete tumour regression. The Phase I study involving humans was completed in 2015* with similar success. By the end of this decade,* after subsequent phases and approval by the FDA, it is available to the wider public.
A small, disc-like sponge – about the size of a fingernail and made from a biodegredable polymer – is implanted under the skin. This contains growth factors and components designed to activate and reprogram a patient's own immune cells "on site". By controlling their biology, it can instruct the immune cells to patrol the body and hunt for cancer cells, killing them. Although initially designed to target cancerous melanoma in skin, this method has potential in treating many other types of cancer. It also helps to lower the cost of cancer treatments, by shifting vaccine production from the laboratory to directly within a patient's own body.*

Connected vehicle technology is being deployed in a number of countries
Many of the world's cars are already linked to the Internet in some way. By 2019, another layer of technology is being added in the form of wireless connections between vehicles.* Using a combination of Wi-Fi and GPS signals, they are now able to alert drivers to potential hazards or obstructions. For example, if a car two vehicles ahead of the driver brakes, but the car immediately in front does not, this technology warns him/her with a loud beep and flashing red lights on the windshield to hit the brakes.
By communicating with each other and the roadway infrastructure, cars now have greatly improved safety, while traffic congestion and carbon emissions are reduced. In fact, the system is so effective that in some countries, accident fatalities drop by 80%.* It soon becomes mandatory, due to the obvious economic and safety benefits. This technology had already begun to appear on trucks, a few years earlier. Now passenger cars are using it too.

Automated freight transport
Autonomous rapid transit has already been in place at certain airports and on city metro systems. By 2019, it has begun spreading to public roads, with significant numbers of driverless trucks appearing.* These are capable of travelling hundreds of miles on their own, negotiating traffic and obstacles using advanced GPS technologies.
They have a number of advantages over human drivers - such as being able to operate for 24 hours a day without getting tired, never being absent, and not requiring a salary or training. The trucks can also detect mechanical or software faults. These automated vehicles will eventually include cars, taxis and other types of road vehicles, becoming widespread by the 2030s.

© Scanrail | Dreamstime.com
Lunar-resonant streetlights are appearing in many cities
In response to the looming energy crisis, this new technology has begun to appear in many urban areas.* As well as saving energy, it also helps to address the issue of light pollution - which not only affects humans, but is a threat to many ecosystems, disrupting the natural circadian rhythm of plant and animal species.
Using a highly sensitive photo-sensor cell, LED light bulbs can be made to dim and brighten, depending on the relative brightness of the Moon and stars at night.* Systems using lunar resonance lamps can save up to 95% of the energy normally used in street lighting.
This offers a substantial reduction in energy usage and pollution, as street lighting uses a large portion of available electricity in developed countries and emits a significant fraction of CO2. In the US, for example, street lamps account for 38% of all electricity used for lighting and produce 300 million tonnes of carbon emissions annually.*
US copyright begins to expire, starting with all works from 1923
Up until 1998, US copyright law stood with all works published before 1923 in the public domain, all works between 1923 and 1977 holding a copyright for 75 years (assuming a renewal was made) and works published after 1977 holding a copyright dependent on the author's date of death.
However, the Copyright Term Extension Act of 1998 made several revisions to the law. While all works published prior to 1923 remained in the public domain, all works published between 1923 and 1977 had their copyrights extended to 95 years after their creation. According to this law, the copyright of the first year of materials, 1923, will expire in 2019, assuming they did not have their copyright renewed. In 2020, all works from 1924 will enter the public domain, and so on.**
Examples of works now entering the public domain this year include the Pulitzer Prize-winning collection of poems, New Hampshire, by Robert Frost; the Noël Coward play, The Young Idea; and the film, The Ten Commandments, directed by Cecil B. DeMille.

Jordan opens its first nuclear power plant
Earlier this decade, Jordan imported 98% of its energy requirements. This was costing the country, a desert nation of six million people, almost one-fifth of its GDP. Faced with such a burden, the government began pushing for greater energy independence. At the same time that Russian companies began searching for oil and natural gas deposits in Jordan, the Jordanian government made a series of deals regarding nuclear power.* In 2013, mining operations began which aimed to exploit Jordan's previously untapped uranium deposits, estimated to be around 67,000 tonnes. By 2015, a five-megawatt research reactor was switched on at the Jordan University for Science and Technology. This led to the first commercial reactor in the kingdom's history being completed in 2019.*
The multi-billion dollar project is built in the city of Majdal, in northern Al Mafraq province, due to its favourable seismic location. Once operations begin, the plant helps the Jordan Nuclear Regulatory Commission (JNRC) to reach its 2020 goal of 6% reliance on nuclear power.
One of the most pressing issues it is hoped the plant will address is the country's water supply, which is precarious: a shortfall of nearly a third for drinking water and 50% for irrigation needs. Desalination had been looked at to cover the deficit. However, this method requires huge amounts of power: an estimated 900 MW for 800 million cubic feet of water. The annual output of the Majdal plant is 1 GW, but Jordan as a whole will require upwards of 8 GW of new power production by 2030. Despite this gap, it is hoped that the country will become a net energy exporter by then - with nuclear energy providing 30% of the kingdom's power.*
During its construction, there is serious opposition to the project. Concerns are raised over safety standards and the lack of feasibility studies. The fact that Jordan lies in a seismically active region leads to fears of a possible meltdown similar to the Japanese Fukushima disaster of 2011.*

The East Side Access subway extension opens in New York
This project connects Grand Central Station in Manhattan to the Long Island Rail Road, via underground tunnels. The idea for the East Side Access dates back to the sixties, but the New York fiscal crisis in 1970 halted work for several years. The newly opened route begins underneath the Sunnyside Rail Yard in Queens and connects to the 63rd Street Tunnel. On the Manhattan side of the project, a series of new tunnels are built which connect from the 63rd Street Tunnel to a new platform under Grand Central Station.
The new route cuts journey times by up to 40 minutes a day for customers who previously travelled to Penn Station and then took a subway, bus or walk to the East Side. It greatly eases traffic congestion, as it becomes the shortest and most direct route between Long Island and East Midtown Manhattan. The East Side Access reduces major burdens on the metropolitan area, namely overcrowding and overcapacity at Penn Station. Overall, trains become more reliable in the area and public transportation is a more realistic option for travellers.*

Credit: MTA
The Aral Sea disappears from the map
As recently as the 1970s, the Aral Sea was the world's fourth largest lake, with an area of 68,000 km2.
However, Soviet irrigation projects diverted the Amu Darya and Syr Darya rivers which fed into it. By 2004, the sea had shrunk to 25% of its original surface area, and a nearly fivefold increase in salinity had killed most of its natural flora and fauna. By 2007, it had declined to 10% of its original size, splitting into three separate lakes, two of which were too salty to support fish. The once prosperous fishing industry had been virtually destroyed, and former fishing towns along the original shores became ship graveyards.
The Aral Sea was also heavily polluted, largely as a result of weapons testing, industrial projects, pesticides and fertilizer runoff. Wind-blown salt from the dried seabed damaged crops and polluted drinking water, while salt- and dust-laden air causd major public health problems in the Aral Sea region. The retreat of the sea also caused localised climate change, with summers becoming hotter and drier, and winters colder and longer.
Although a dam project in 2005 saved what little remained of the northern part of the sea (the Small Aral), the much larger southern part of the sea (the Large Aral) continued to shrink, and by 2019 had evaporated entirely.*
Credit: NASA
Oil prices are becoming dangerously high**
Global crude oil reserves – having reached a plateau in 2005 – are now in serious decline, causing havoc on the financial markets. Food and energy prices have soared, creating the worst financial crisis the world has ever seen. With most of the remaining oil located in the Middle East, further conflict looms in this troubled region.

No comments:
Post a Comment